
© ITIV 2017 DHL Exercise 2 1

Prof. Dr.-Ing. Dr. h.c. J. Becker

Digital Hardware Design Laboratory (DHL)

Institut für Technik der Informationsverarbeitung, Karlsruher Institut für Technologie (KIT)

Exercise 2- Creating Testbenches for module verification

1 PREPARATION 1

2 TASK DESCRIPTION 1

2.1 Main Task 1

2.2 Additional Task - Testbench with File Access 3

1 Preparation

Prior to the laboratory afternoon for this exercise you should get familiar especially with the
following topics:

 Fundamental knowledge on processors and machine code processing

o See also additional material “Basics processor”

 Basics of HDL simulations

o What is a testbench and for what is it used?

o What possibilities do VHDL simulation tools (especially Vivado and

ModelSim) offer in order to test and debug VHDL designs?

o See also additional material “Testbenches and logic simulation in VHDL”

2 Task Description

2.1 Main Task

Write a Testbench for testing the ALU core provided as part of the templates.

The Testbench should test the ALU using the Opcode Mapping [(7 downto 4) of 8-Bit

Instruction word] depicted below.

Table 1: Operations of the ALU

Opcode Operation Explanation Flags Comments

0 0000 + Addition Z,N,C data_in0 + data_in1 (not VZ-

afflicted)

1 0001 - Subtraction Z,N,C data_in0 - data_in1 (not VZ-

afflicted)

2 0010 OR log. OR Z,-,-

© ITIV 2017 DHL Exercise 2 2

3 0011 AND log. AND Z,-,-

4 0100 XOR log. exclusive OR Z,-,-

5 0101 NOT log. Negation Z,-,-

6 0110 SHR Shift to right Z,-,C LSB → C and ‘0’ → MSB

7 0111 SHL Shift to left Z,-,C MSB → C and ‘0’ → LSB

8 1000 Ø No operation -,-,- Load Register 1 with new data

9 1001 Ø No operation -,-,- Load Register 2 with new data

10 1010 Ø No operation -,-,- Jump Instruction

The Testbench should work synchronously to a clock of 100 MHz and use a high-active reset

signal which is active for the first 100ns of the testbench in order to initialize its signals upon

startup.

Use following program in order to test the ALU (see also “program.txt”). Store the

instructions in an 8-Bit array of the required number of elements (type definition) and iterate

through this array during the testbench.

You have the option to use a clocked process for controlling the Testbench or use “wait until

rising_edge(…)” / ”wait for …ns” statements within an asynchronous process in order to

control the Testbench for driving the ALU signals. Your testbench has to play the role of an

opcode interpreter which drives the required signals of the data path in order to load registers,

do calculations, perform jumps etc.

Start by writing down a table which contains the expected values for the registers (see Figure)

after each instruction of the test program. After implementing the testbench, use a VHDL

simulation to check if the design works correctly and if the register values match the

expectations.

Additional notes:

 Iterate through the “instruction memory” in order to test the ALU.

 You have to enable the ALU if a computation has to be performed.

 Opcode “1000” and “1001” don’t require processing by the ALU but storing new data

to the registers. Opcode “1010” requires modifying the value of the Testbench’s

“program counter”.

 Results computed by the ALU need to be stored into register 1.

 You need to control the multiplexer for storing results from the ALU to register 1 or

loading new data to the register.

© ITIV 2017 DHL Exercise 2 3

R1 R2
en en

MUX
1 0

ALU

I1 I2

Instr

Instr_en

Status

Result

Result
_Reg

Status
_Reg

Instruction_en

Mux_sel_sig

Instruction

mux_R2_data_in

R1_en

R2_en

Status_outALU_res

Reg

ALU_res_rdy

Sel

Testbench

Data_path_struct

Figure 1: ALU structure and assembler program

Address Assembler

program

Machine

programme

 OP-

Code

Operand

$00 LD1 #C 1000 1100

$01 LD2 #8 1001 1000

$02 ADD 0000 0000

$03 LD2 #4 1001 0100

$04 SUB 0001 0000

$05 SUB 0001 0000

$06 LD1 #C 1000 1100

$07 LD2 #8 1001 1000

$08 JMP #2 1010 0010

2.2 Additional Task - Testbench with File Access

Iterating through large data bases in a Testbench which is stored in an array as described

above, is inefficient for large amounts of data, like an input image coming from the camera.

The behavior of each element of the array needs to be simulated by the Simulator for every

simulation step which slows down simulation tremendously.

For that reason, Modelsim provides a library (std.textio) for opening files in a Testbench and

making available only small amounts of the file at a time. Use the attached template

(Rechenwerk_TB_modelsim.vhd) for extending your testbench with the improved input data

handling using the std.textio library in the Modelsim simulator. In this task, the jump

instruction doesn’t need to be handled for it requires closing and iterating through the file in

order to reach the desired address which would require stalling the data_path_struct.

In the “VHDL_Ex2.data\sources_1\hdl” folder you will find a simulation start script which

compiles the design files and runs the simulation. Run it by executing “do run.do” in the

modelsim command line.

Note: The library also allows writing data from the Testbench to a file in order to evaluate the

correctness of the simulation results outside of the Modelsim simulation environment (e.g.

storing a computed image as a .ppm image file for visualization) – the function calls are

“write(buffer, signal)”, “writeline(file, buffer)”. Don’t forget to close an opened file when it

is not needed anymore: “file_close(file)”.

